The Complexity of Factors of Multivariate Polynomials
نویسنده
چکیده
The existence of string functions, which are not polynomial time computable, but whose graph is checkable in polynomial time, is a basic assumption in cryptography. We prove that in the framework of algebraic complexity, there are no such families of polynomial functions of -bounded degree over fields of characteristic zero. The proof relies on a polynomial upper bound on the approximative complexity of a factor of a polynomial in terms of the (approximative) complexity of and the degree of the factor . This extends a result by Kaltofen (STOC 1986). The concept of approximative complexity allows to cope with the case that a factor has an exponential multiplicity, by using a perturbation argument. Our result extends to randomized (twosided error) decision complexity.
منابع مشابه
Trajectory Planning Using High Order Polynomials under Acceleration Constraint
The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...
متن کاملFactoring Multivariate Polynomials over Finite Fields
We consider the deterministic complexity of the problem of polynomial factorization over finite fields given a finite field Fq and a polynomial h(x, y) ∈ Fq[x, y] compute the unique factorization of h(x, y) as a product of irreducible polynomials. This problem admits a randomized polynomial-time algorithm and no deterministic polynomial-time algorithm is known. In this chapter, we give a determ...
متن کاملThe Fourier structure of low degree polynomials
We study the structure of the Fourier coefficients of low degree multivariate polynomials over finite fields. We consider three properties: (i) the number of nonzero Fourier coefficients; (ii) the sum of the absolute value of the Fourier coefficients; and (iii) the size of the linear subspace spanned by the nonzero Fourier coefficients. For quadratic polynomials, tight relations are known betwe...
متن کاملA Lecture on the Complexity of Factoring Polynomials over Global Fields
This paper provides an overview on existing algorithms for factoring polynomials over global fields with their complexity analysis from our experiments on the subject. It relies on our studies of the complexity of factoring parametric multivariate polynomials that is used for solving parametric polynomial systems in our PhD thesis. It is intended to be useful to two groups of people: those who ...
متن کاملDeterministic distinct-degree factorization of polynomials over finite fields
A deterministic polynomial time algorithm is presented for finding the distinctdegree factorization of multivariate polynomials over finite fields. As a consequence, one can count the number of irreducible factors of polynomials over finite fields in deterministic polynomial time, thus resolving a theoretical open problem of Kaltofen from 1987.
متن کاملOn Multivariate Chebyshev Polynomials and Spectral Approximations on Triangles
In this paper we describe the use of multivariate Chebyshev polynomials in computing spectral derivations and Clenshaw–Curtis type quadratures. The multivariate Chebyshev polynomials give a spectrally accurate approximation of smooth multivariate functions. In particular we investigate polynomials derived from the A2 root system. We provide analytic formulas for the gradient and integral of A2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001